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In order to demonstrate the correctness of a system, de- 
velopers today must resort to either exhaustive testing or 
some combination of testing and formal verification follow- 
ing the use of appropriate methods in the development pro- 
cess. While formal methods have afforded numerous suc- 
cesses, their application today presents serious issues, e.g., 
costs to gear up to apply them (time, expensive staff), and 
scalability and reproducibility (as long as standards in the 
field are not settled). The testing path cannot be walked to 
the ultimate goal, because exhaustive testing is infeasible 
for all but trivial systems. So system verification remains 
problematic, as do, similarly, system and requirements vali- 
dation. The predominant view today is that provably correct 
system development depends on having a formal model of 
the system-leading to a desire for a mathematically sound 
method to automate the transformation of customer require- 
ments into a formal model. Such a method, an augmen- 
tation of requirements-based programming, will be briefly 
described in this paper, and a prototype tool to support it 
will be presented. The method and tool enable both re- 
quirements validation and system verification for the C~LSS 

of systems whose behavior can be described as scenarios. 

An application of the tool to a prototype automated ground 
control system for NASA missions is presented. 

I. INTRODUCTION 

Automating the software development process has been 
one of the major goals of Software Engineering almost from 
the outset [IO]. Such automation promises to reduce errors, 
increase productivity, and improve the quality of code. 

Approaches such as Model-Based Development (MBD) 
or Model-Driven Development (MDD) do much to facil- 
itate automatic code generation. The basic tenet of these 
approaches is that higher quality code can be produced by 
having developers focus on the generation of an appropri- 
ate model, from which code can be generated. This is 
in contrast with a more traditional development approach 
whereby models (designs) are continually updated in vari- 
ous iterations of portions of the system development lifecy- 
cle. Clearly, having an appropriate model up front simpli- 
fies the task of automating code generation. 

Automatic code generation has been successful, and 
there are a number of commercially-available tools, many 
of which support particular notations, such as the Unified 
Modeling Language (UML) or Specification and Design 
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Language (SDL). A number of tool vendors successfully 
market tools to support code generation from these nota- 
tions (e.g., Rational’s ROSE and Telelogic’s Tau). 

11. LIMITATIONS TO CURRENT APPROACHES 

We will not critique commercially available (nor public 
domain) tools for automatic code generation here. We are 
not questioning the quality or integrity of the code produced 
by available tools. 

However, we do observe that many popular tools have 
been seen to produce large amounts of extraneous code that 
is unrelated to the model from which code is being gener- 
ated, and that cannot be justified as merely necessary stan- 
dard code [9]. In addition, all available tools are constrained 
by the quality and appropriateness of the model from which 
the code is to be generated [IO]. 

Developing an appropriate model ab initio is no trivial 
task. As Brooks [3] puts it, specifying and designing the 
system is the main challenge, not coding it and testing that 
code: I believe the hard part of buiMing sofmare to be 
the specification, design and testing of this conceptual con- 
struct, not the labor of representing it and testing the$delity 
of the representation. 

The Specification-lmplementation Gap refers to the sig- 
nificant change that must be made in transforming a spec- 
ification (expressed at suitable levels of abstraction and in 
a manner suitable for various types of analysis) into an ef- 
ficint implementation in a programming language [9], [IO]. 

The greater problem, or gap, however, is the Analysis- 
Specification Gap, which refers to the jump, and conse- 
quent difficulty, of taking (often complex) requirements and 
specifying them in a manner that is clear, concise, complete 
and yet amenable to analysis. This gap is significantly more 
difficult to overcome [9], [IO]. 

Requirements-Based Programming (RBP) [5], [6] repre- 
sents a great step in that direction. 

111. FORMAL REQUIREMENTS-BASED PROGRAMMING 

Requirements-Based Programming (RBP) essentially 
extends Model-Based Development so that requirements 
are systematically and mechanically transformed into ex- 
ecutable code. 

This may seem to be an obvious goal in modem system 
development, but RBP does in fact go a step further than 
current development methods. RBP seeks to ensure that the 
ultimate implementation can be fully traced back to the ac- 
tual requirements (although, as proposed by its advocates, 
it does not necessarily entail full mathematical provability 
of the equivalence of a set of requirements and its imple- 
mentation) [ 161. 

Our belief is that Requirements-Based Programming 
should be formal [ 171. That is, that in addition to supporting 
tractability from requirements through to code, there should 
be an underlying formalism. Without such formality, proof 
of correctness is impossible [2]. 

A. R2D2C 

R2D2C (Requirements-to-Design-to-Code) is a NASA 
patent-pending approach to the engineering of complex 
computer systems, where the need for correctness of the 
system, with respect to its requirements, is particularly 
high. This category includes complex NASA mission soft- 
ware, flight software, and ground control systems, amongst 
others. 

The approach, described in greater detail in [IO], [17], 
embodies the main idea of requirements-based program- 
ming. It goes further, however, in that the approach of- 
fers not only an underlying formalism, but also full formal 
development from requirements capture through to auto- 
matic generation of provably correct code. Moreover, the 
approach can be adapted to generate instructions in formats 
other than conventional programming languages; these in- 
clude, for example, instructions for controlling physical de- 
vices, and rules embodying the knowledge contained in ex- 
pert systems. 

B. Requirements to Design to Code 

R2D2C takes, as input, system requirements written by 
engineers (and others) as scenarios in natural language, or 
UML use cases, or some other appropriate graphical or tex- 
tual representation. From the scenarios, an automated theo- 
rem prover in which the laws of concurrency [SI have been 
embedded infers a corresponding process-based specifica- 
tion expressed in an appropriate formal language (currently 
we are using CSP, Hoare’s language of Communicating Se- 
quential Processes [ I  I], [12], but other languages may al- 
ternately be used). 

A process-based specification is far more amenable to 
analysis, and also forms a more appropriate basis for code 
generation. As much as possible, R2D2C makes use of 
widely available tools and notations that are well-trusted 
and that have been demonstrated to be useful in the devel- 
opment of high quality systems [ 161. 

A “short-cut’’ approach to R2D2C [9], [ 101 avoids the use 
of an automated theorem prover, which is computationally 
expensive. This alternative approach involves the inference 
of a corresponding process-based specification (in a lan- 
guage we have named EzyCSP) without a theorem prover, 
but requires a (one time) proof of the translation in order 
to preserve the mathematical underpinnings of the R2D2C 
approach. Figure 1 illustrates those parts of the approach 
for which we have built a prototype tool (described in the 
remainder of this paper), and shows where commercially 
available and public domain tools may be used to support 
the approach [16]. 

Iv. LAWS OF CONCURRENCY 

We use the term laws of concurrency to refer to a large 
number of rules, equivalences and interrelationships of CSP 
operators, as detailed in [SI. These laws allow us to demon- 
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Fig. 1. The R2D2C approach and current status of the prototype. 

strate equivalences in CSP models, most of which also hold 
for concurrent systems in general. 

In CSP, two process expressions are deemed to be equiva- 
lent if they can be demonstrated to have the same semantic 
interpretation in the current semantic model of CSP (e.g., 
traces, failures-divergences) that we are applying. For com- 
plex systems in which we wish to consider deadlock and 
livelock, a more powerful semantic model, such as failures- 
divergences, may be required. For simple systems, it may 
simply be the original traces model of CSP [12]. (A trace 
of a process, in CSP terminology, is the sequence of atomic 
events that the process has engaged in up to a given point in 
time.) 

For example, in the simple traces model, we can demon- 
strate that parallel composition is both commutative and as- 
sociative by proving that 

t(PIIQ) = t(Qllp) 

and 
tpll(QIIR) = t(PIIQ)IIR. 

These rules (commutativity and associativity) now en- 
able us to rewrite CSP expressions in various ways. Ad- 
ditionally, refinement may be defined appropriately in the 
semantic model. If (in that semantic model) we can prove 
that 

4 I1 . . . llpn G P 
then we may move up and down through various levels of 
abstraction, and either increase (or decrease) the degree of 
concurrency in the CSP model by substituting 
f o r P ( o r P f o r P I I I  . . . I [  P,). 

The R2D2C tool is supported by having a deep embed- 
ding of these laws of concurrency in the theorem prover 
(currently ACL2). Sufficient rules are added to the theorem 
prover to capture the laws, and their interrelation in various 
semantic models, to enable proof of a plethora of equiv- 
alences and refinements. The relevant semantic model of 
CSP may also be used to prove properties and invariants. It 
can be used to investigate whether certain conditions arise 
or not, whether certain occurrences can be recovered from, 

I I . . . I 

to demonstrate (in the more sophisticated models) the exis- 
tence or absence of deadlock or livelock, etc. 

Typically, the laws of concurrency are used to provide 
an interpretation for process expressions. That is, we prove 
two process expressions to be equivalent by demonstrating 
that they have the same interpretation in the given semantic 
model. For example, in the traces model, the rules might 
be used to generate the sets of traces of two process expres- 
sions, which are then compared to determine whether they 
are equal or not. In the R2D2C approach, we apply the laws 
in the opposite direction: a set of traces is examined to infer 
an equivalent process expression. 

V. PROTOTYPE TOOL 

Our R2D2C approach may easily be adapted to use other 
notations. We are currently using CSP. In part, this is be- 
cause we believe it is highly appropriate for the classes of 
systems with which we ourselves are concerned. Addition- 
ally, it is well known in the profession and widely taught in 
college courses, and so should be familiar to many. Lastly, 
several commercial and public domain tools are available 
to support its use and implementation in Java and other pro- 
gramming languages [7]. 

The formal model, expressed in CSP in this case, is the 
central part of the proposed approach, which conforms to 
a Model Driven Architecture (MDA) [ 131. The prototype 
tool automatically generates the code from the CSP model 
(or design) (Figure 2) into which the tool has already trans- 
formed the requirements [ 161. 

Two major issues must be addressed: 
0 translating the CSP model into code, and 
0 translating the requirements into the CSP model. 

The tool transforms the derived design (CSP model) into 
an equivalent software representation (code) using Java as 
the target programming language [16]. There were several 
reasons for selecting the Java programming language [4] 
both for tool implementation and for the target platform. 

0 Java is a general-purpose, concurrent, class-based, 
object-oriented programming language, with very 
few implementation and hardware dependencies. 
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Fig. 2. MDA approach 

0 An off-the-shelf implementation (library) of CSP for 
Java [ 11 is available. While Communicating Sequen- 
tial Processes for Java (JCSP) does not provide di- 
rect CSP-to-Java mapping, it conforms to the CSP 
model of communicating systems for Java multi- 
threaded applications [14]. There is also support for 
distributed JCSP components using JCSP.net [23]. 
Java Swing [22], in combination with some available 
Java IDES, greatly simplifies user interface develop- 
ment. 
Many Java-based translator development tools are 
available. 

The prototype tool implementation in Java uses off-the- 
shelf components. A Swing-based user interface provides 
a transparent layer for entering the requirements and view- 
ing the resulting model [16]. Figure 3 shows the high-level 
program flow. 

The translators are implemented using the ANTLR (AN- 
other Tool for Language Recognition) tool [ IS], which pro- 
vides a framework for constructing recognizers, compilers, 
and translators from grammatical descriptions. A discus- 
sion of ANTLR and some related tools can be found in [20]. 
An English-like input language, specified as an ANTLR 
grammar, is used to specify user requirements (Figure 4). 
ANTLR uses the grammar to automatically generate the 
translator. The translator is then used to generate the CSP 
model that corresponds to the user requirements (Figure 5). 
Figure 6 shows the graph-based representation of the sys- 
tem (under development) [16]. 

VI. A REAL LIFE EXAMPLE 

A. LOGOS 

The Lights-Out Ground Operations System (LOGOS) is 
a proof-of-concept NASA system for automatic control of 
ground stations when satellites pass overhead and under 
their control. LOGOS is a community of autonomous soft- 
ware agents, exhibiting autonomic behavior and cooperat- 
ing to perform the functions that in the past have been per- 
formed by human operators using traditional software tools 
such as orbit generators and command sequence planners. 
It is designed to operate in “lights out” mode (i.e., with- 

out human intervention except in situations where problems 
and anomalies can no longer be dealt with by the system 
itself). The interested reader is directed to more detailed 
descriptions of LOGOS, given in [ 191 and [21]. 

B. LOGOS in R2D2C 

We will not consider the entire LOGOS system here. Al- 
though a relatively small system, it is too extensive to il- 
lustrate in its entirety in this paper. Instead, we will take 
a couple of example agents from the system, and illustrate 
their mapping from natural language descriptions through 
to implementation in Java code. 

Let us first illustrate, via a trivial example, how scenarios 
map to CSP. Suppose we have the following as part of one 
of the scenarios for the system: 

if the Spacecraft Monitoring Agent receives a “fault” advi- 
sory from the spacecraft the agent sends the fault to the 
Fault Resolution Agent 

OR 
if the Spacecraft Monitoring Agent receives engineering 

data from the spacecraft the agent sends the data to the 
Trending Agent 

That part of the scenario could be mapped to structured 
text as: 

inSMA?fault from Spacecraft 
then outSMA!fault to FIRE 

else 
inengSMA?data from Spacecraft 

then outengSMA!data to TREND 

The laws of concurrency would allow us to derive the 
traces as: 

tSMA 2 { () , (inSMA, fault), 
(inSMA, fault, outSMA, fault)} U 

{ (), (inengSMA, data), 
(inengSMA, data, outSMA, data)} 

From the traces, we can infer an equivalent CSP process 
specification as: 

SMA = inSMA?fault -+ (outSMA!fault + S K I P )  
1 (inengSMA?data --f outengSMA!data ---f S K I P )  

Let us now consider a slightly larger example, the 
LOGOS Pager Agent, and illustrate its implementation in 
Java. The pager agent sends pages to engineers and con- 
trollers when there is a spacecraft anomaly and there is 
no analyst logged on to the system. The pager agent re- 
ceives requests from the user interface agent that no ana- 
lyst is logged on, gets paging information from the database 
agent (which keeps relevant information about each user of 
the system-in this case the analyst’s pager number), and, 
when instructed by the user interface agent that the analyst 
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Fig. 6. Graphical representation of a system 

has logged on, stops paging. These scenarios can be re- 
stated in more structured natural language as follows: 

if the Pager agent receives a request from the User Interface 
agent, the Pager agent sends a request to the database 
agent for an analyst’s pager information and puts the 
message in a list of requests to the database agent 

OR 
if the Pager agent receives a pager number from the 

database agent, then the pager agent removes the mes- 
sage from the paging queue and sends a message to the 
analyst’s pager and adds the analyst to the list of paged 
people 

OR 
if the Pager agent receives a message from the user inter- 

face agent to stop paging a particular analyst, the pager 
sends a stop-paging command to the analyst’s pager and 
removes the analyst from the paged list 

OR 
if the Pager agent receives another kind of message, reply 

to the sender that the message was not recognized 

The above scenarios would then be translated into CSP. 
Figure 7 shows a partial CSP description of the pager agent. 
This specification states that the process PAGER-BUS re- 
ceives a message on its “Zin” channel and stores it in a 
variable called “msg”. Depending on the contents of the 
message, one of four different processes is executed. If 
the message has a START-PAGING performative, then the 
GET-USERJNFO process is called with parameters of the 
type of specialist to page (pagee) and the text to send the 
pagee. If the message has a RETURNDATA performative 

with a pagee’s pager number, then the database has returned 
a pager number and the BEGINPAGING process is exe- 
cuted with a parameter containing the original message id 
(used as a key to the db-waiting set) and the passed pager 
number. The third type of message that the pager agent 
might receive is one with a STOP-PAGING performative. 
This message contai ns a request to stop paging a particular 
specialist (stored in the pagee parameter). When this mes- 
sage is received, the STOP-PAGING process is executed 
with the parameter of the specialist type. If the pager agent 
receives any other message than the above three messages, 
an error message is returned to the sender of the message 
(which is the first item of the list) stating that the message 
is “UNRECOGNIZED’. After this, the PAGERBUS pro- 
cess is again executed. 

The R2D2C prototype tool will produce Java code from 
the CSP model as follows. 

class Pager extends Thread ( 
Transaction analystmessage; 
Transaction databaserequest; 
Transaction messaqenotrecoqnized; 
Transaction pagernumber; 
Transaction pagerrequest; 
Transaction stoppagqinqmessaqe; 
boolean running; 

public Paqer(Transacti0n analystmessaqe, 
Transaction databaserequest, 
Transaction messaqenotrecognized, 
Transaction pagernumber, 
Transaction pagerrequest, 
Transaction stoppaqgingmessage) { 

this.ana1ystmessage = analystmessaqe; 
this.databaserequest = databaserequest; 



PAGERBUsdb_,iting, paged = page,:h?mSg -+ 

case 

GET-USER_INFOdb-~aitin~, paged. pagee. lex1 

if msg = (STARTPAGING, specialist, text) 

ifmsg = (RETURNDATA, pagernum) 

ifmsg = (STOPPAGING, pagee) 

otherwise 

BEGINPAGINGdb-wairing, paged, in-rt'plyJoid(mg). pagernirm 

STOP-CO~ACTdb-~aiting, paged, pagee 

page,: lout!( head( msg), UNRECOGNIZED) + PAGER4 US&-waiting, paged 

Fig. 7. Partial CSP description of the pager agent. 

this,messagenotrecognized = 

this.pagernumber = pagernumber; 
this.pagerrequest = pagerrequest; 
this.stoppaggingmessage = 

messagenotrecognized; 

stoppaggingmessage;) 

public void r u n 0  ( 
int index = 0; 
running = true; 

while (running) ( 
switch (index) ( 
case 0: 

while (pagerrequest.committed0 == 

Test .out.println ("pagerrequest"); 
Test. out. flush ( )  ; 
while (databaserequest.committed0 == 

Test.out.println("databaserequest"); 
Test .out .flush 0 ; 
break; 

while (pagernumber.committed0 == 

Test.out.println("pagernumber"); 
Test.out.flush0; 
while (analystmessage.comitted0 == 

Test.out.println("ana1ystmessage"); 
Test .out .flush() ; 
break; 

while (stoppaggingmessage.committed0 == 

Test.out.println("stoppaggingmessage"); 
Test .out. flush ( )  ; 
break; 

while (messagenotrecognized.committed0 == 

Test.out.println("messagenotrecognized'); 
Test.out.flush0; 
break; ) 

false) ; 

false) ; 

case 1: 

false) ; 

false) ; 

case 2: 

false) ; 

case 3: 

false) ; 

index++; 
index) ) ) 

C. Results 

A formal specification of LOGOS in CSP had previously 
been undertaken by hand [IS]. This was most insightful, 
highlighting over 80 errors and anomalies in the require- 
ments of a relatively small system (LOGOS is based, es- 
sentially, on ten interacting agents). While many of these 
were minor oversights that only would have caused incon- 
veniences, others were more significant. 

A great advantage of using an example for which we al- 
ready have a formal specification is that we can compare 
the system derived by our prototype. tool with the manually 
derived formal specification. 

Several errors of omission were found in LOGOS. A typ- 
ical sampling of these follows. 

0 The implementation left undetermined what happens 
if the pager agent receives no response within a spec- 
ified amount of time. In that case, should the pager 
agent automatically resubmit a page, or should this 
command come from the user interface agent? 

0 It was left undetermined whether the pager agent 
should change whom they are paging after some pre- 
scribed elapsed period of time with no response to 
the page, and what that time interval should be. Or, 
again, should that information come from the UIFA? 

0 It was left undetermined what happens when the 
pager agent receives a request to page someone that 
it has already paged, yet there is not a response to the 
page and a request to stop paging that person has not 
been received. In this situation, the pager agent can 
either re-page the party or ignore the request. In addi- 
tion, if a party can be paged multiple times, does the 
software have to keep track of the number of times 
the party was paged or other relevant information? 

0 It was left undetermined whether the pager agent 
should cache specialist pager numbers and informa- 
tion for a specific amount of time, or should always 
request this information from the database (even if 
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there is an active, unanswered page for a specialist). 
There is nothing specified as to what should be done 
if the requested pagee does not exist. 

Our prototype tool was able to uncover all of the errors 
and anomalies we found with our manual inspection. We 
were surprised when we first ran it to find that it halted 
within seconds, having found yet another error that had 
been introduced into the requirements (due to a typograph- 
ical error) when changes were made following the original 
manual formal specification. The prototype tool can cope 
with the LOGOS requirements, generating a design and a 
Java implementation in a matter of minutes, whereas man- 
ual specification had taken several days and code generation 
by hand took several weeks. 

D. Range of Applicability 

The R2D2C method and the associated tool are highly 
applicable to those classes of system whose requirements 
may be expressed as scenarios, whether in natural language 
or some graphical or other textual representation. 

It is particularly appropriate for use with systems that 
involve high degrees of concurrency. This naturally in- 
cludes most of NASA's missions, and in particular current 
and forthcoming autonomous systems, where missions will 
involve greater degrees of self management. This is essen- 
tially the class of systems for which we were first motivated 
to develop the approach. 

VII. FURTHER APPLICATIONS & FUTURE WORK 

We have described a prototype tool to support formal 
Requirements-Based Programming. In its current realiza- 
tion, that tool takes requirements expressed in (constrained) 
natural language, derives a formal model (currently ex- 
pressed in CSP), and generates a simple Java implemen- 
tation. 

As one would expect, most of these notations may be 
substituted with alternative (but equivalent) notations. Re- 
quirements input may be given as UML use cases, for ex- 
ample, or in a tabular format. Other process algebras may 
be used for the internal representation of the formal model 
(design). And, as we pointed out in Section 111-A, the code 
produced need not necessarily be code in a conventional 
programming language. 

At the time of writing, we are currently applying the tool 
to procedures that may be used in the Hubble Robotic Ser- 
vicing Mission (HRSM). HRSM is an unmanned servicing 
mission that will use two robot arms, using a combination 
of telecontrol and robotic automations, to replace cameras 
and gyroscopes and perform other upgrades on the Hubble 
Space Telescope (HST). Servicing will take extended peri- 
ods of time, many lasting several days, under the constraints 
of limited battery power, and re-planning will be necessary 
after launch as it is only at this point that the final orbital 
phasing is known. 

Our experiences using R2D2C to generate the ordering 
of telecontrolled operations, and the instructions for robotic 
devices, are described in [17]. 

We are also looking at using this technology for valida- 
tion and verification of expert systems and for capturing 
expert system domain knowledge, which we view essen- 
tially as requirements. The approach may be applied to 
expert systems used in automating ground control of var- 
ious spacecraft, such as Advanced Composition Explorer 
(ACE). 

Future work will include 
the development of several analysis and validation 
tools (as shown in Figure 1); 
addition of support for what-if analysis and alterna- 
tive implementations; 
support for a variety of graphical, textual, and tabular 
input notations, simultaneously; 
improving the quality of the inference (by a theorem 
prover) of process-based specifications from require- 
ments; 
optimizing code generation; 
improving the user interface of the prototype; and 
applying the tool to further complex real-life exam- 
ples. 

VIII. CONCLUSIONS 

A tool to support the Requirements-to-Design-to-Code 
(R2D2C) method and a simple example of its applica- 
tion, as presented in this paper, illustrates the potential for 
augmented requirements-based programming. The NASA 
prototype Lights Out Ground Operation System (LOGOS) 
is an example of the class of appropriate applications of 
the R2D2C method-where system requirements can be 
stated as scenarios. The behavior of a LOGOS agent can 
be described in terms of scenarios, which the prototype 
R2D2C tool can transform into EzyCSP, a subset of the 
formal specification language Communicating Sequential 
Processes (CSP). The tool transforms the CSP model into 
Java code representing the original requirements (scenar- 
ios). The transformations are provably equivalent, thus 
qualifying R2D2C as a mathematically sound method for 
transforming requirements into an implementation. Since 
the CSP model can be analyzed mathematically as to sat- 
isfaction of any given propositions, R2D2C produces vali- 
dated requirements, and since the model can be transformed 
into a provably equivalent implementation, R2D2C pro- 
duces a system with verifiable correctness. 
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